

Mercer County Extension Office
1007 Lexington Road
Harrodsburg, KY 40330

RETURN SERVICE REQUESTED

NONPROFIT ORG
US POSTAGE PAID
HARRODSBURG, KY
PERMIT #72

Linda McClanahan

Linda McClanahan
Mercer County Extension Agent for ANR

Cooperative Extension Service
Mercer County
1007 Lexington Road
Harrodsburg, KY 40330
(859) 734-4378 Fax: (859) 734-4379
mercer.ca.uky.edu

Did you know... Germany is credited with starting the tradition of putting up a Christmas tree. Candy canes were not always striped; they were originally all white. In the Northern Hemisphere, December is the first month of winter. In the Southern Hemisphere, it is the first month of summer.

upcoming events

December 3-6 KY Farm Bureau Federation Annual Meeting, Louisville
December 4 Fort Harrod Backcountry Horsemen Meeting, 7 PM
December 5 Harrodsburg Christmas Parade
December 9 Mercer County Agriculture Advisory Council Meeting, 6 PM
December 9 UK Beef Webinar, 8 PM
December 11 Mercer County Extension Office Holiday Open House, 4-6:30 PM
Dec 24-Jan 2 Extension Office Closed

January 11-13 KY Fruit and Vegetable Conference, Bowling Green
January 15-16 KY Cattlemen's Association Convention, Owensboro
January 16 KY Commodity Conference, Bowling Green
January 20 Area Forage Meeting, Boyle County Extension Office, 6 PM
January 22 Area Grain Meeting, Boyle County Extension Office, 6 PM
January 26 Central KY Ag Lenders Conference, Fayette County Extension Office, 12-5 PM
January 30-31 KY Farm Bureau Young Farmers Winter Conference, Louisville

Mercer County Extension Council invites you to our

Big Blue Open House

Thursday, December 11

4:00-6:30pm

Cooperative Extension Service

See how Extension can be a benefit for you and your family! Meet your county agents and learn more about the programs we have to offer. We will have appetizers, refreshments, holiday crafts, and door prizes. Family-friendly event, all ages welcome.

Mercer County Extension Office
1007 Lexington Road
Harrodsburg, KY 40330

Take your picture with Santa!

Corn and Soybean Variety Trial Data Now Available

The University of Kentucky corn and soybean variety trial information is now available online. You can access the information through the QR Code in this article. The data was collected from 7 corn locations and 6 soybean locations across the major growing areas of Kentucky.

A wet spring led to delayed planting in some trials, so pay close attention to planting dates and all the agronomic information. Remember, the multi-location state summary data is the best resource for making variety selection decisions. Growers should only use single location data in conjunction with the state summary data to identify varieties that performed well both across the state and at their regional location.

For Corn, you will find good yields across all locations, except Fayette County. This was due to planting date and then the hot, dry weather in that area in late summer. This led to a CV that is higher. The coefficient of variation (CV) is a calculated value that helps indicate unexplained variation in these studies. A smaller CV indicates less unexplained variation and more precise results. Field variability is usually amplified under less ideal/stressful environments.

For Soybean, yields across trial locations were dramatically different based on precipitation levels at each site. CV values were acceptable to good at all locations, except the Warren County site where drought stress fostered highly variable results (which was not included in the state summary).

For more information on all these tests, or to contact Bill Bruening or Cam Kenimer, please visit the website via the QR Code. We'd like to thank the Kentucky Corn Promotion Council and the Kentucky Soybean Promotion Board for their support and all others who helped make another successful year in variety testing!

Citation: Kenimer, C., Bruening, W., 2025. Corn and Soybean Variety Trial Data Now Available. Kentucky Field Crops News, Vol 1, Issue 11. University of Kentucky, November 14, 2025.

Cam Kenimer, UK Agriculture Research Specialist

(859) 627-1422 ckenimer@uky.edu

Bill Bruening, UK Research Scientist III

(859) 218-0802 bill.bruening@uky.edu

A Forecast of Uncertainty: Why Kentucky's Winter Weather Could Swing Wildly this Year

Tony Edwards, National Weather Service-Charleston, WV

What will the upcoming winter bring? While the Farmers' Almanac offers an early peek, the Climate Prediction Center (CPC)—part of the National Weather Service—releases the "official" U.S. winter outlook in October. Today, we're diving into the details of that forecast for the Commonwealth of Kentucky.

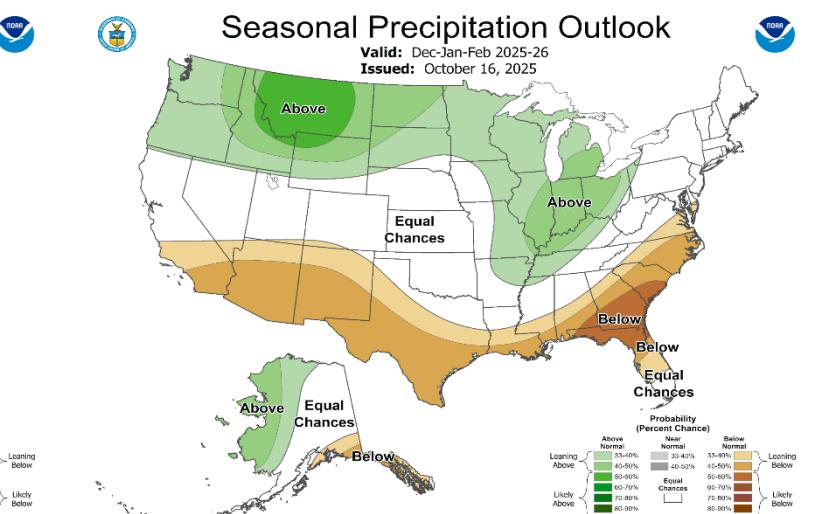
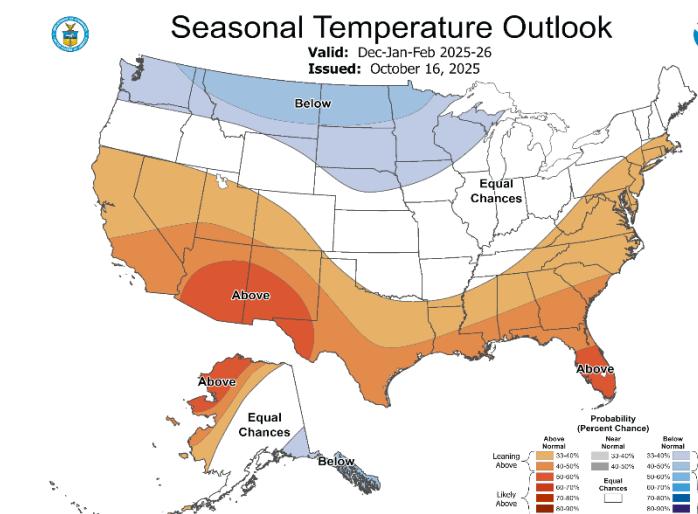
The El Niño/La Niña Factor

Every long-range winter outlook starts with the El Niño-Southern Oscillation (ENSO), a climate pattern defined by Pacific Ocean water temperatures near the Equator. El Niño (warmer than normal) and La Niña (colder than normal) are powerful global drivers that dictate the general winter weather across the United States. Currently, we have a weak La Niña pattern in place, meaning water temperatures in the central Pacific are slightly below average, a condition expected to persist through at least the beginning of winter.

A strong La Niña typically favors a storm track that keeps the Commonwealth rather wet. Temperature-wise, Kentucky often sits in a transitional zone, positioned between the typically milder air to the Southeast and the significantly colder temperatures over the Northern Plains.

This winter's official outlook aligns with this theme:

- **Precipitation:** Greater chances for **above-normal precipitation** across much of the state.
- **Temperatures:** Greater chances for **above-normal temperatures** across Southeast Kentucky.



However, the key word in this forecast is **"weak."** The current weakness of the La Niña pattern dramatically lowers our confidence in a "traditional" outcome. A weak La Niña can easily be overmatched by other, more unpredictable climate influencers. This results in a massive range of potential weather scenarios, as seen in past weak La Niña winters.

The outcomes are striking in their contrast: The winter of 1983-1984, for instance, was a weak La Niña year that brought a cold and dry season to the Commonwealth. Fast forward to the more recent 2022-2023 winter, which also featured a weak La Niña, and the result was dramatically different: a season that was distinctly mild and wet.

The potential for such varied outcomes means this winter's forecast carries a higher degree of uncertainty than in years with a strong ENSO signal.

The Snow Question: Hope for Snow Lovers

While the CPC does not issue a specific winter snow outlook, looking at historical data gives us some clues. La Niña is typically not good news for snow lovers in the Commonwealth, with a historical tendency for below-normal snowfall, a signal that is even stronger during weak La Niña events. Despite the trend, exceptions prove that anything is possible. The 1995-1996 winter—which featured a weak La Niña—was a cold and snowy winter, and in fact, remains the snowiest winter on record in Eastern Kentucky.

EASY ROAST BEEF POTLUCK ROLLS

Thinly sliced deli roast beef is sandwiched between rolls and baked with cheese until golden and delicious.

Ingredients:

- 1 pound thinly sliced reduced-sodium deli roast beef
- 1 package (12 ounces) Hawaiian rolls
- 1/4 cup cream-style prepared horseradish
- 6 slices reduced-fat provolone cheese
- 1/3 cup butter, melted
- 2 tablespoons Worcestershire sauce
- 1 tablespoon dried parsley leaves
- 2 teaspoons packed light brown sugar
- 1/4 teaspoon onion powder

Cooking:

- Coat 9 x 13-inch baking dish with cooking spray. Cut rolls in half, horizontally. Place bottom halves of rolls in prepared baking dish; spread horseradish on cut side. Top with Deli Roast Beef, cheese and top halves of rolls.
- Cook's Tip: You may substitute Dijon mustard for prepared horseradish.**
- Combine butter, Worcestershire sauce, parsley, sugar and onion powder in small bowl; mix to combine. Pour mixture evenly over sandwiches. Cover and refrigerate 1 hour to overnight.
- Preheat oven to 350°F. Bake, uncovered, 15 to 20 minutes or until cheese is melted and rolls are golden brown.

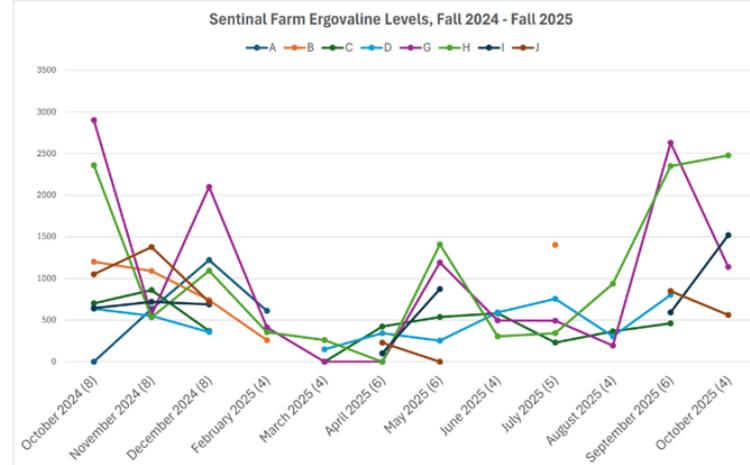
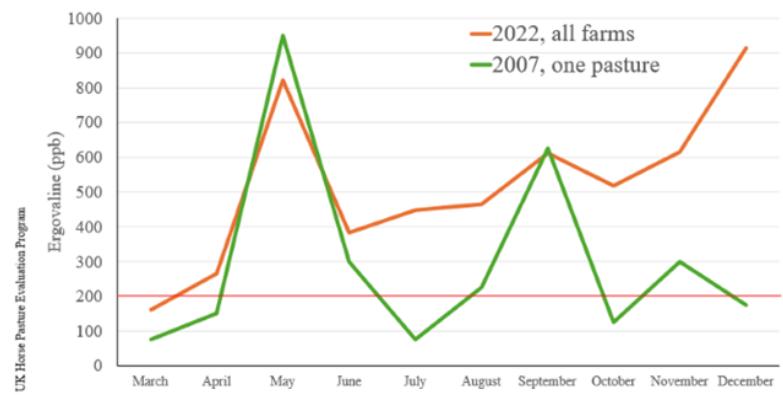
Nutrition information per serving: 453 Calories; 164.7 Calories from fat; 18.3g Total Fat (9g Saturated Fat; 3.7g Trans Fat; 1g Polyunsaturated Fat; 3.7g Monounsaturated Fat); 86 mg Cholesterol; 426 mg Sodium; 51g Total Carbohydrate; 2.8g Dietary Fiber; 21g Protein; 3.5mg Iron; 182mg Potassium; 3.5mg NE Niacin; 0.1mg Vitamin B6; 0.4mcg Vitamin B12; 1.2mg Zinc; 9.8mcg Selenium; 16.3mg Choline.

This recipe is an excellent source of Protein, and Niacin; and a good source of Dietary Fiber, Iron, Vitamin B12, Zinc, and Selenium.

Fescue Toxicity in the Fall: Is this an Issue?

The last four late summers and falls have had extended dry periods, followed by late-fall rains. This has made fall forage establishment and fall stockpiling difficult since dependable rains have come very late. These long dry periods have also caused considerable stress on cool-season forages. In many parts of the region, Kentucky bluegrass was completely dormant, and many orchardgrass stands have thinned. On the other hand, KY-31 tall fescue plants have only shown reduced growth with leaf curling (a drought survival response), but the endophyte has allowed good survival of these plants. When the fall rains finally came, fescue-predominant pastures were the first ones to green up. Unfortunately, the new growth after these periods of drought stress has shown abnormally high levels of ergovaline, the toxic alkaloid in KY-31 tall fescue. Normally, the highest levels of ergovaline are in May and June when seedheads are present and lower in the fall when the plants are in a vegetative stage, but it seems that these higher ergovaline levels are some type of drought response in the plant. The high fall ergovaline levels have also extended into early winter since hard freezes (<25 degrees) seem to be coming later the last few years.

You might ask, "Why should I care?" We normally aren't concerned about toxicity in tall fescue during the fall, and this is part of the reason that fall calving has been encouraged in the region. The lower ergovaline in the fall allows good milk production for fall calves and fewer rebreeding issues than with spring calving herds. These herds are being bred during the very toxic late spring period. Although we have not conducted systematic research, below are anecdotal reports from KY farms from the fall of 2024.



The following observations are from UK's Dr. Les Anderson. Last fall, I had several questions regarding fescue toxicosis from grazing fescue regrowth after Hurricane Helene. One producer was breeding late October/early November and had zero conception rate on cows with a long history of great conception. He also had 30% of his herd get tender feet during this period, and he treated for foot rot, even though it did not appear to be foot rot. Another producer called and had a few abortions during this period on his January calving cows. His cow's feet were also tender.

Dr. Chris Teutsch shared the following observations from when he worked in Virginia. We had a major drought one year, 18" behind at one point in time. About mid-August, it started to rain, and we got the most beautiful stockpiled tall fescue that I can remember. Later that fall, we had a laundry list of fescue-related issues, including little or no milk and thickened placentas. The issues were the worst on farms that were practicing good grazing management and had good soil fertility. They were creating an environment in which fescue thrived.

Below are some observations from a retired county agent in KY concerning breeding success last fall. One farm had less than 15% success with embryo transfer on a herd of over 20 cows. Bulls did get a better conception of the next cycle, but there were still some that were late. Another local producer had a herd of 35 cows, which were A.I.ed with timed insemination. He had 8 out of the 35 conceive. The clean-up bull did get pregnancies, but still disappointing results. Two other herds that do a lot of embryo work reported very poor results. On the other hand, a herd on Novel endophyte fescue had 3 out of 3 embryos conceive and carry the pregnancy, and 8 out of 11 conceive on a timed A.I.

What can you do? If you are seeing issues or have in the past few years, you can take cows off predominant tall fescue pastures in the fall (wait until a couple of hard freeze periods before putting them back on these pastures). Legumes, especially red clover, help alleviate fescue toxicity. Therefore, feed hay containing red clover. An alternative is feeding soybeans (2 lbs per day) or soyhulls (5 lbs per day). You can completely renovate your most toxic fields with novel endophyte tall fescue and have your cows on these fields before, during, and just after the breeding season. You can also test for ergovaline levels by submitting fall fescue samples from your pasture to the UK Vet Diagnostic lab. Then you can better determine which fields are the safest for grazing during the fall. Here's the link for the sampling guidelines and how to submit samples to UK VDL.

Figure 1.(right) The bottom line shows the normal ergovaline levels during a one year period and the upper line shows what happened in 2022. We saw similar results in 2023 and 2024. With cattle it's best if they are not consuming more than 500ppb ergovaline in their total diet. Note: in mixed pastures make sure to take into account the dilution factor. If fescue is 1000ppb but they it's only half of their diet, then they are only consuming 500ppm.

Figure 2. (left) The UK forage group has been monitoring tall fescue ergovaline levels on four different farms in Central KY and two pastures on each farm. Here are the results over the last year. One farm had extremely high ergovaline levels, but other farms still had concerning levels. Again, remember that it's not the ergovaline that matters but what percentage of high ergovaline fescue is in their total diet.

Figure 3. The level of ergovaline in the total diet indicates the potential risk for livestock. We assume that most animals readily consume tall fescue and other forages like bluegrass, orchardgrass and clover, but are less likely to consume weeds. For example, late term pregnant mares should not have over 200ppb ergovaline in their total diet. For cattle, the numbers are less precise, but generally fescue toxicity issues may be observed when ergovaline levels in the diet are consistently over 500ppb. See below for examples of ergovaline in the total diet based on the amount of tall fescue, other forages, and undesired plants/bare soil.

Fld	Tall Fescue (%)	Other Forages (%)	Undesired plants/bare soil (%)	Endophyte (%)	Ergovaline (ppb)	Ergovaline in Total Diet (ppb)
1	23	45	30	97	2000	676 X
2	35	25	40	94	226	132 ✓
3	40	37	23	23	175	91 ✓
4	9	13	78	81	600	245 ✓
5	9	13	78	81	1800	735 X

Figure 4. Simple formula to calculate ergovaline in total diet.

$$\left(\frac{\% \text{ Tall Fescue}}{\% \text{ Tall Fescue} + \% \text{ Other Forages}} \right) \times \text{Ergovaline (ppb)} = \text{Ergovaline in total Diet (ppb)}$$